
Inverted Pendulum

Objectives

The objective of this lab is to experiment with the stabilization of
an unstable system. The inverted pendulum problem is taken as
an example and the animation program gives a feel for the chal-
lenges of manual control. A stabilizing linear controller is designed
using root-locus techniques, and the controller is refined to enable
stabilization of the inverted pendulum at any position on the track.

Introduction

The inverted pendulum system is a favorite experiment in control system labs. The highly

unstable nature of the plant enables an impressive demonstration of the capabilities of feedback

systems. The inverted pendulum is also considered a simplified representation of rockets flying

into space.

Fig. 8.32 shows a diagram of the experiment. A cart rolls along a track, with its position

x being controlled by a motor. A beam is attached to the cart so that it rotates freely at

the point of contact with the cart. The angle of the beam with the vertical is denoted θ, and

an objective is to keep the angle close to zero. Since the pendulum may be stabilized at any

position on the track, a second objective is to specify the track position. However, recovery

from non-zero beam angles may require significant movements of the cart along the track, and

stabilization may be impossible if an insufficient range of motion remains.

A model of the inverted pendulum may be derived using standard techniques. A careful

derivation (H. Khalil, Nonlinear Systems, 2nd edition, Prentice Hall, Upper Saddle River, NJ,

1996) shows that

(I +mL2)
d2θ

dt2
+mL cos(θ)

d2x

dt2
= mgL sin(θ) (8.39)

where m is the mass of the beam, 2L is the length of the beam, I = mL2/3 is the moment of

inertia of the beam around its center of gravity, and g is the acceleration of gravity. For small

angles θ, it follows that
4
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(8.40)

and, the transfer function of the system is

Θ(s)

X(s)
=

−s2
(4/3)Ls2 − g (8.41)
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Figure 8.32: Inverted Pendulum System

The system has poles at s = ±p3g/4L. The positive root is unstable, and instability
worsens when the beam is short (as one might expect). Another tricky problem is that the

system has two zeros at s = 0. This is due to the fact that an acceleration of the cart is required

to impact the beam angle. On the other hand, this property makes stabilization possible for

arbitrary cart positions.

More complex models assume that the control variable is the force applied to the cart,

rather than its position. This assumption is more realistic in many cases, but makes manual

control very difficult. Instead, the simulation program of this lab represents the delay in the

motion of the cart by the response of a first-order system

X(s) =
f

s+ f
Xcom(s) (8.42)

where xcom is the commanded cart position, x is the cart position, and f > 0. The overall

transfer function of the system is then

Θ(s)

Xcom(s)
=

−fs2
((4/3)Ls2 − g)(s+ f) (8.43)
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or
Θ(s)

Xcom(s)
=

bs2

(s+ a)(s− a)(s+ f) (8.44)

where a =
p
3g/4L, b = −3f/4L.

Manual control

The simulation program resides in the file invpend.m. The program assumes that L = 1 m,

and that x is limited to ±2L. The beam angle is prevented from exceeding ±30◦. The value
of f is 5, so that the cart responds relatively fast to commands. Even with rapid position

control of the cart, however, the system is difficult to control with a joystick. The program

has a “cheat” variable that allows you to make the problem easier. The variable reduces the

magnitude of the gravity constant, and the choice cheat = 6 is preset in the program (it ’s as

if you controlled the pendulum on the moon!).

Have fun trying to keep the beam balanced. If you feel comfortable with it, try to move the

cart from the left line to the right line, while keeping the beam balanced. Describe in words

the challenges of the control problem and your strategies for control. How close to 1 can you

let the cheat variable be? For how long? You may be asked to demonstrate!

Automatic control

Stabilizing controller

First, you will design a controller to bring the beam angle to zero at the zero track location. Try

to find a stabilizing controller using root-locus techniques, and noting that the plant transfer

function is

P (s) =
Θ(s)

Xcom(s)
=

bs2

(s+ a)(s− a)(s+ f) (8.45)

Explain why it is necessary to use an unstable controller, in order to have a chance at stabilizing

the system.

Then, consider the second-order controller (with zero reference input)

C(s) =
Xcom(s)

−Θ(s) = k
(s+ a)(s+ f)

(s− a)(s+ c) (8.46)

Note that, with the cancellations, the closed-loop system has three poles. The controller has

two parameters k and c to be adjusted. Show that it is possible to choose the parameters so

that all three closed-loop poles are placed at s = −a/2. Compute the parameters required for
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the system and draw the root-locus for varying k. Verify that the closed-loop system is stable

by use of the Nyquist criterion (function nyquist in Matlab). Plot the Bode plots and compute

the gain and phase margins of the system (function margin in Matlab). Indicate how much

the gain of the system can be increased or decreased while preserving stability.

The controller must be implemented in discrete-time, assuming a sampling rate of 20Hz.

Check the help files for the Matlab functions tf, c2d, and ssdata to get information on how to do

it (you may also look in the simulation code how the transfer function (8.41) was implemented).

Use the option ’zoh’ for the discretization. Implement the controller transfer function in a file

invpendc.m, with its initialization in a file invpendcinit.m. Test the response of the system by

setting the initial value of the variable theta at 5 degrees (the initial value can be set at the

beginning of the simulation program). Plot the responses of the beam angle and of the cart

position resulting from this initial error. Check that the beam angle returns to zero within the

expected time period and with the expected dynamics, given the pole locations.

Tracking controller

Modify the controller so that an arbitrary set-point of the cart position can be imposed.

Replace Xcom(s) = −C(s)Θ(s) by
Xcom(s) = Xref(s)− C(s)Θ(s) (8.47)

Note that this is an unusual configuration for a feedback system, because the reference com-

mand is applied to the plant input rather than the controller input. Interestingly, the plant

output cannot be set to an arbitrary position in this problem, but the plant input can. Gen-

erate steps of position reference alternating between 1m and −1m every 20 seconds, and plot

the responses of x, xcom, and θ for 60 seconds. Let the initial beam angle be zero.

You should observe an overshoot in the response of the cart. Compute the transfer function

from Xref(s) to X(s) and observe that there is a zero at a frequency lower than the closed-loop

poles. This problem may be addressed by using a pre-filter CF (s) so that

Xcom(s) = CF (s)Xref(s)− C(s)Θ(s) (8.48)

where CF (s) is a first-order filter with unity DC gain and a pole located at the same value

as the low-frequency zero. Plot the responses of x, xcom, and θ for 60 seconds, with steps of

position reference alternating between 1m and −1m every 20 seconds. Explain the fact that

the variable xcom initially moves in the direction opposite to the step applied. Can this effect

be eliminated by prefiltering of the reference command (as was done for the overshoot)? Test

the controller for the cheat variable equal to 6, and again for the variable equal to 1. Show

your code and demonstrate the real-time operation to the TA.
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Report at a glance

Be sure to include:

• Description of challenges and strategies for manual control.

• Design and evaluation of the stabilizing controller with the variable cheat=6. Include con-
troller parameters, root-locus, Nyquist criterion, gain and phase margins, and responses

to initial beam angle.

• Design and evaluation of the controller for set-point tracking with the variable cheat=6.
Plots of responses of x, xcom, and θ to step changes in set-point of the cart position.

• Design and evaluation of the controller for set-point tracking with the variable cheat=1.

• Observations and comments.

• Listing of invpendc.m and invpendcinit.m.
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