Project Management

Ken Stevens

ECE 3992
Project Management

- Topics
 - Teamwork complications
 - Idea selection
 - Setting scope and objectives
 - The reality of risks
 - Defining success
 - Realistic scheduling
 - Initial design requirements
 - Documentation
Team Projects

- Teamwork – it’s more elusive than you think
 - Leadership teams – common in the workplace and the thesis option
 - clear cut leader
 - point of resolution for disputes
 - often sets and articulates strategy
 - workload assignments and monitoring
 - focus is whole project’s scope and progress
 - ideally
 - experience, anticipate trouble before it hits
 - lead through difficulty in fair and productive fashion
 - merits respect through ability rather than demands through position
 - Peership teams – likely in 4900/4910
 - NO clear cut leader
 - although one may emerge
 - beware the yes-man underlings!!!
 - must still provide leader contributions
Choosing Teammates

- No single algorithm
 - personality and needs vary
 - “fire in the eyes” test

- This is a year-long collaboration
 - some qualities are apparent for the wish list
 - talent to do (as opposed to talk/pretend) the job
 - dependable
 - honest
 - inform group of problems BEFORE they become critical
 - efficient communicator
 - this is easier if mechanisms are articulated by the group in advance
 - committed to doing the job right
 - genuine enthusiasm for the project is an important marker
 - others?
Team Composition

- **Obvious Requirements**
 - group skills need to match project requirements
 - may be obvious but reality makes this hard

- **The most crucial and hardest part to get right**
 - affects everything else
 - the choice is persistent
 - so: take care on this aspect
 - problems are guaranteed
 - make sure they aren’t show stoppers
Team Destroyers

- Lack of open communication
 - should be no difference in what group knows
 - personal design and implementation is encouraged
 - group review, problem solving, moving past stick points, etc.
 - look out for cliques and sub-group formation!!

- Anything that delays clarity

- Anything that takes more time than it should
 - disputes and competition is healthy if they are resolved in a timely manner
 - it’s not a contest
 - individuals don’t win or lose here – the group wins or loses together
 - differences of opinions help evolve the best answer
 - criticize ideas – not people

- Any negative emotion
 - engineers design, philosophers emote
 - disagree and commit
Idea Selection

- Idea & Team = Chicken & Egg
 - the idea needs to be embraced by the team
 - the team skills need to fit the idea
 - it’s an ordering problem

- In the end, the idea needs to:
 - be fun and exciting
 - you should all be truly excited to get this system working
 - must have an engineering scope that is commensurate with a full semester project dome by the number of people in the team

- Novelty requirement
 - There isn’t one – OK to design something you can buy
 - learning how to make things work is a lot of fun
Idea Pragmatics

- THE important point
 - whatever your proposal is
 - it must be finished, documented, demonstrated
 - on time

- Psychologically
 - if it’s fun you’ll do it AND do it well
 - if it’s drudgery
 - you and the project will suffer
 - don’t go here

- Sample ideas
 - talk to professors from classes you liked
 - discuss with me
 - brainstorm as a class
Scope

- It’s a 6 hour \((3+3)\) aggregate project by definition
 - definition: 6 hours/week in class + 12 hours/week homework
 - not many classroom hours, but meet with me as needed
- Hence
 - Initial scoping sanity check is by level of effort
 - 18 hours honest work \(\times\) 15 weeks \(\times\) number of team members
 - or 270 hours per team member
 - DOES include
 - design, test, demonstration and documentation
 - does NOT include
 - parts lead time, etc.
- Planning for the right scope
 - suggests a manpower estimate for all the tasks
 - this means top-level design and planning
 - needs to be done right as soon as possible!!
Scope Problems

- Things we often underestimate
 - how slow we are
 - documentation time
 - debugging and test time
 - time lost due to screw-ups and risks
 - time lost due to people issues
 - hammered by another class
 - hammered by the need to ski
 - hammered by the need to take a break
 - hammered by sales people
 - lesson = plan for people, not robots
 - group communication time
 - regularly scheduled status meetings are a must
 - minimum requirement is once per week
 - results must be documented in a meeting log
 - can be short but MUST be regular
Group Scope

- Project scope = \sum of the components

- Each component
 - ideally gets assigned to one individual
 - group components are allowed but a lead individual needs to be specified
 - distributed responsibility is a great way to plan for failure
 - the buck needs to stop somewhere

- Parallel efforts
 - key to productivity
 - only works when interfaces are articulated, understood, and documented IN ADVANCE
 - and when screw-ups are communicated instantly

- Component-wise design, testing, and combination
 - process should be clear and scope should be doable with a comfortable margin
Setting Objectives

- The specifics of what you will DO
- Keys to success (remember you must finish!!)
 - have a baseline set of objectives
 - what you’re sure you can pull off in the allotted time
 - with room to spare
 - something you’ll be proud of
 - this is MUCH MORE important than you might think
 - It’s the crowning achievement of your undergraduate career
 - future employers/grad schools will place a lot of value on this and so should you
 - add a wish list
 - what you hope you can also pull off
 - if things go smoothly
 - and you’re pretty sure you’ll knock the socks of the judges
 - Prof Stevens, your mother, your future employer, etc.
Risk Management

• Every project has risks
 ✦ people/parts/design/testing/salesmen/weather...

• 1st step in managing risks
 ✦ articulate them (this is required in your proposal)
 ■ no need to go crazy at this point
 ● remember quality engineering is concerned with reality
 ■ e.g. Joe gets drafted to serve in Iraq (oops...)
 ■ er: Joe gets abducted by Martians
 ● sure it’s a risk, but not a plausible one
 ✦ primary plan – plausible avoidance of the risk
 ✦ mitigation plan – what happens when the primary plan fails
 ■ might be as simple as how the project proceeds without the risky component
 ■ ideally provides a plan on how to deliver an equivalent or at least adequate substitute
Surprises

- Every project has them
 - the best planned projects articulate them as risks also
- Large group projects
 - have even more surprises
 - more people mean more communication surprises
 - OK, call them misunderstandings or optimizations
 - more personality issues
 - more dependencies
 - bigger scope means more things can go wrong
 - more interfaces
 - more components
 - probably starts to look like Murphy’s law
Defining Success

- Key part of the project planning process
 - defining EXACTLY how you know whether the objectives have been met
 - this must be articulated for the system as a whole and for each major component

- Demonstrating a capability
 - requires defining a test and non-subjective way to score the result
 - in reality the test may have several components
 - this is what you’ll show on the final demo day

- Subjective evaluation
 - rarely makes sense, so avoid it
 - exceptions exist for every rule
 - e.g. what if your system generates music
 - non-subjectively it will have to make sound
 - subjective as to whether the music is good or not
Success and the Final Demo

- Why is it such a big deal?
 - because it influences your grade
 - OK - this is an operational issue but isn’t the point

- The Point:
 - we’re in a professional discipline
 - and labor is in an over-supply situation
 - your job could move to India/China/Russia
 - doesn’t matter if the situation changes
 - bottom line
 - the best people get good jobs and the average people don’t get very impressive choices
 - the most compelling evidence of what you can do with your education
 - is what you have chosen to do and executed as your senior project or thesis
 - NOTE: grad student GPA’s are in the who care’s column – its all about what you did for your thesis
Scheduling

- Note: this requires experience and skill to do properly
 - normally you’ll find this very hard at this early career stage

- What’s required?
 - account for EVERY aspect of the project
 - provide a per-man and per-task GANT chart
 - basically a time-line and dependence chart
 - at any given point in the next year you should be able to answer
 - what team member x is going to be doing on day y
 - this may be overkill, but think of it as an idealized target
 - risk factors should be clearly articulated
 - regular meaningful milestones and the test procedures need to be clear
 - slip impact should be easy to determine
 - margin levels should also be relatively clear
Project Aspect

- Team selection & idea articulation clearly needs to happen first
 - and be revised, scoped, and finally frozen once everybody is happy
 - NOTE: your proposal won’t be finished yet.
- Then it starts for real
 - initial design flow
 - component identification
 - lesson learned: in the end this part couldn’t do what we thought it could
 - result – demoralizing failure to achieve your goals or extra panic to replace the part with the proper one
 - interface design and specification
 - absolutely critical to enable parallel effort
 - initial design specification and schedule
 - includes tasking, testing, milestones, risk assessment, etc.
- The Bill of Materials (you’ll read lots of specs)
 - supplier identification – primary and secondary
 - lead times (everything needs to be in place by Christmas)
- proposal
 - detailed specification of the above
 - you’ll need my approval BEFORE you get the green light to write it
Initial Design

- Proposal contents review
 - abstract of functional objectives
 - top level design
 - tasking
 - interface specification
 - testing plan and process
 - integration models
 - risk analysis
 - schedule
 - Bill of materials
High Level Design Implications

- Implication
 - *high level design needs to be done by semester’s end*
 - creative part can be a lot of fun
 - however, the blue-sky needs to meet reality
 - of proper scope and realizable by you on time
 - both grade and satisfaction will suffer if you can’t pull it off
 - HW, SW, & synthesis modules need to be specified
 - need to be clear about what you’ll design vs. what you’ll acquire
 - the interfaces need clear definition
 - which is why the will be required in the proposal
 - hardware components will need to be understood
 - web time and lots of reading and group discussion are in your future
 - everybody in the group needs to understand this high level design thoroughly!!!
A Note on Help

- Fundamentally
 - this project is about what your team knowledge, creativity, and skill can produce
 - the next stage of your career is watching
 - you get to lead the choice for a change
 - make it both fun and rewarding

- However
 - feel free to learn from outside experts
 - faculty, friends, colleagues, papers, books, etc.
 - make sure these sources are cited in your documentation
 - required now due to academic ethics
 - will be required later by law and professional/corporate ethics
 - BUT make sure the actual design/implementation/thest is done ONLY by the team
Documentation

- Two main documents
 - 3992 – project proposal
 - See “Proposal Writing” presentation
 - KEY concept
 - this starts now and largely evolves into the:
 - 4710 – final project report
 - thorough description of the entire project
 - ideally working repository of decision and status (lab notebook)
 - with format and contents sufficient for publication in conference
 - others should be able to reproduce your work from this document
 - KEY concept
 - this should evolve from your proposal and lab notebook