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Abstract

In this paper, we study the delay performance of secondagysusSU) under dynamic spectrum
access. We design simple time-threshold policies for thet&Uninimize the average delay while
satisfying the collision probability constraint of the mary user (PU). Such policies perform closely to
an optimized policy found by a Markov Decision Process (MEfP)nulation, while facilitating analytical
analysis of the delay and collision probability. For geherssy and idle period distributions, we analyze
the performance of the threshold policy through a one-dsimeral Markov chain, and develop analytical
expressions to approximate the delay and collision prdibafiihe accuracy of the Markov chain analysis
and the analytical approximations are examined under warfimsy and idle distributions. The capacity.
impact of the busy and idle distributions on system perforogaare investigated. We find that while
the idle distribution determines the time capacity, theybdistribution significantly affects the delay

performance of the threshold policies.

Index Terms
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|. INTRODUCTION

Cognitive Radio (CR) technology has great potential tovédke spectrum scarcity in wireless
communications. It allows secondary users (SUs) to oppdatically access spectrum licensed
by primary users (PUs) while protecting PU activity. Thissngaradigm is typically referred to
asdynamic spectrum access (DSA) [1]. In this paradigm, because the protection of PUiialyva
design imperative for an SU opportunistic access stratedg minimize the SUs’ effect on PU
transmissions. For instance, the SU must guarantee thabthg&on probability of a PU packet
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is less than a threshold specifiedpriori by the PU. This type of constraint on the collision
probability has been widely considered in the literaturle- [5].

In this paper, we conduct analytical study of the delay perémce of the SU under a collision
constraint for the PU. This work is inspired from [6] in whitlie time capacity of the SU access is
established under a collision constraint, assuming trePtl activity follows a general busy/idle
time distribution. While we consider the same PU model as ohd6], in this work we adopt
a different SU model to address a new problem in the designaatmission policies for DSA.
The goal is to reduce the SU’s access delay under PU prateaia to characterize the delay
performance of the SU under these policies. In [6], the Sssmed to be always backlogged
in order to determine the time capacity. Thus, whenever a gmectrum opportunity appears,
the SU can transmit. In comparison, in this work we assumetti@aSU’s packet arrival follows
a Bernoulli arrival process. Therefore, even when a goodtspp®a opportunity appears, the SU
may not be able to transmit if it has an empty queue. Thus, dudé dynamics of the SU
gueue, the delay analysis developed here involves newitpedsithat are significantly different
and more challenging than those of [6]. The threshold pedicdeveloped here, for minimizing
delay, are also different from those found in [6], despite gimilarity in the structure of these
policies.

In this work, we first establish the SU’s optimal access potic minimize delay for general
busy/idle time distributions using a Markov Decision PsxdMDP) formulation. While the
MDP provides an optimal policy, its calculation is cumbengoand provides little insight. This
motivates us to develop a simple and more structured thigegndicy that achieves near optimal
performance. The main contribution of this work is that wealgrpe the performance of the
threshold policies through a Markovian analysis, and dgveallosed-form approximations of
the delay and collision probability for such policies undarious PU busy/idle distributions.
Numerical results confirm the accuracy of our approximation

This work differs from other related work on the delay anay®r DSA networks in that
we explicitly consider the collision constraint in the delanalysis, which is missing in other
work such as [7]. Furthermore, our work considers generayfule time distributions, which
also differs from that of [8] where the analysis is developsduming exponentially distributed

busy/idle time. We assume the PU activity to be unslottedymmsed to [5], which assumes a



slotted structure. Due to the technical challenges of teertttical analysis, in this paper we limit
ourselves to consider the case of a single SU accessing adlinelh possibly shared by multiple
PUs. In the analysis we also make the idealized assumptiperdéct sensing and provide only
numerical results for the imperfect sensing case. Extessid the analysis to the more realistic
case of multiple SUs and multiple PU bands are importanttioes for future research, but are
out of the scope of this paper.

The remainder of the paper is summarized as follows. In &edtj we introduce the system
model that characterizes the PU and SU activities. In Sedtlpwe present the optimal MDP
policy and the time-threshold policies. We analyze the grerfince of the threshold policies
in Section IV through Markovian analysis, and derive clefmun analytical expressions to
approximate the delay and collision probabilities of suohqpes in Section V. Numerical results

are presented in Section VI. Finally, we conclude in Sectidin

1. SYSTEM MODEL

In this section we describe our system model. We considesspaetrum band that is assigned
to the PU, and one SU that opportunistically exploits thecBpen opportunities vacated by the
PU under the protection requirement of the PU. While it issgae that there are multiple PUs
sharing the spectrum band, we assume that the SU does niogdish among different PUs,
and can only access the channel when no PU is active. Thu§Uheeats all PUs collectively

as one “aggregated” PU in designing the spectrum accesmsshe

A. Primary User Model

We assume that the PU activities follow an alternating bdsypattern. Multiple PU packets,
possibly with various lengths, are transmitted within aybperiod. When all PU packets in
the queue have been transmitted, the PU channel becomesTidiePU channel remains idle
until the arrival of the next PU packet, which is the start o next busy-idle cycle. We denote
the sojourn time of the PU idle state @&sits probability density function (PDF) af(-), its
cumulative distribution function (CDF) aB;(-), its mean agi; = [ vf;(v)dv, and its second
moment as; = [ v?f;(v)dv. Similarly, B, fg(-), Fs(-), up, vp represent the sojourn time of the

PU busy state, the pdf, the cdf, the mean, and the second nioraspectively. The percentage



of time that the PU channel is idle js /(7 + 15), Which is an upper-bound on the percentage
of time that the SU can transmit on the PU channel. Note thalevdur results are applicable
to arbitrary time-scales of the PU busy/idle time, the des§ the DSA is simpler and it can
achieve higher capacity if the time-scale of the PU busg/ithe is relatively large compared to

that of a packet transmission time.

B. SU Model

We consider a packetized, time-slotted system for the S®E.9W has a fixed packet length that
is no greater than that of the PU. Smaller values of the SUgidekgth provide more freedom
for designing the SU access strategy. The arrival procesheoSU is modeled as a Bernoulli
process such that with probability an SU packet arrives in a time slot and with probability
1 — p there is no packet arrival. Each SU time slot consists of atgensing period, followed
by a transmission period, as shown in Fig. 1. The SU senseshéwenel during the sensing
period. If the channel is sensed busy, then the SU does nmntiaiin the remainder of the
time slot, and will sense the channel again in the sensinggeif the next SU time slot. If the
channel is sensed idle, then the SU has the option to eithesrrit, or not transmit, according
to some transmission policy described in Section lll. Faaregle, the SU does not transmit in
time slot 2 after sensing, either because its queue is empbecause its transmission policy
decides so. If the SU transmits and the PU channel remaiesfadithe entire duration of the
SU transmission period, then the transmission is sucde$3fioerwise, in the event that the PU
returns in the middle of the SU transmission period, a packlision occurs. This is illustrated
in Fig. 1, where it shows that a collision occurs in time-gtot~or ease of presentation, in this
paper we do not consider PU/SU packet re-transmission irvbat of a collision, even though
such modifications should be straightforward. We also assaminfinite buffer size at the SU

and thus the packet dropping probability is not considere.h

C. PU Caollision probability requirement

We denotep.. as the average packet collision probability “perceived'tiiy PU in the long-run,

given by p
p. = limsup 2=i=0 Velh). )
K—o0 Zk:o Ny (k)



where N.(k) and N,(k) are random variables representing the total number ofdealliand
transmitted packets of the PU in theth busy-idle cycle, respectively. The PU has a packet
collision probability requirement such that < »n, which is imposed by either the PU or the
spectrum regulators and is known to the &priori. Under the assumption that the packet length
of the SU is no greater than that of the PU, and that the semsitgpme of the SU is perfect,
we note thatthere is at most one PU packet collision within a busy-idle cycle, which may only
occur at the beginning of a busy period when the PU returns after the SU has already sensed

the channel to be idle and started a transmission. During the next SU time slot, the SU will
sense the channel to be busy and refrain from transmisgias, davoiding additional collisions
with the PU packets. The analysis developed in this papendgmusuch assumption. When the
sensing outcome is not error-free, the SU can possibly nagsctithe PU activities, thus causing
multiple PU packets collisions within a busy period. We vaitidress the latter scenario through
simulation in Section VI.

[Il. TRANSMISSION POLICIES FORMINIMIZING DELAY

In this section, we study transmission policies to minimike average queueing delay of
the SU under the collision constraipt < n. We assume that the SU has knowledgenof
and the PU busy/idle time distribution, i.ef;(-), and fz(-). An option to obtain an optimal
policy is to use the powerful tool of Markov Decision Procelss particular, the state space is
two-dimensional: time and queue length; and the actiontieeito transmit or not to transmit.
Through an MDP formulation, we compute the optimal transiois policy that minimizes the
average cost in an infinite horizon. The cost considered h@sgwo components: the delay cost
and the collision cost. The collision cost can then be adfustumerically to meet the collision
probability constraint. Due to space limitation, we refeg teaders to [9] for a detailed description
of the MDP formulation.

Using the MDP formulation, we can numerically calculate atirmal MDP policy to minimize
the delay while satisfying the collision probability coraht. However, the calculation is
cumbersome and with numerical errors (e.g., while both thember of packets in the queue
and the lengths of the busy/idle periods can go to infinityhaee to truncate them in numerical
calculation). In addition, the MDP policy provides littlesight on the relationship between delay

and other system parameters. Therefore, we are motivatiedkdfor a more structured policy.



It is shown in [6] that, for the case of backlogged traffic, dpimal SU transmission policy
that achieves the time capacity of a PU channel is a timestioid policy, i.e, the SU should
transmit only when the elapsed time since the channel has idé® denoted by, is below a
thresholdl™. The intuition behind this is that the SU should transmityomhen the probability of
a collision with the PU is small. For most idle distributiaccensidered, [6] shows that conditioned
upont, the probability of a collision due to an SU transmissionmagtt is an increasing function
of t. This naturally yields a time-threshold policy so that thg ®ill transmit only whent is
below a threshold.

We can easily adapt the time-threshold policy of [6] hereh ¢ase when the arrival process
of the SU packets is dynamic. The time-threshold policy litfesholdl" is defined such that the
SU will transmit only when the following three conditionseamet. (i) the channel is sensed idle.
(i) t < I" (note that thid" is in general different from the thresholt that maximizes capacity).
(iif) the SU queue lengthV/ is greater than zero. The time-threshdldshould be adjusted to
satisfy the PU collision probability constraint. As shown$ections IV and V, the simplicity
of time-threshold policies facilitates theoretical arsdyof the delay and collision probability.
Furthermore, to examine the effectiveness of the timestiolel policy, we compare it with the
optimized policy found by the MDP formulation. We find thaettime-threshold policy performs
very closely to the optimized the MDP policy despite its dlicify. This reveals that the elapsed
time t is the major factor that affects the delay and collision pimlity of a transmission policy,

hence justifies the usage of the time-threshold policy cansd here.

IV. MARKOV CHAIN ANALYSIS FOR THRESHOLD PoLICY

In this section, we develop Markovian analysis to analyzedblay and collision probability
of threshold policies. Since the SU is not synchronized whi PU, the SU can only estimate
the lengths of the PU busy and idle period through perioditsisg. In the remainder of this
section, the lengths of the busy and idle periods refer tolehgths of these observed by the
SU, which are integer multiple of the length of an SU time .skair instance, if the SU detects
the PU channel to be busy fd# consecutive SU slots (sensing is done only once within each
SU slot), then the length of the busy period (observed by tdgiS B. The length of the idle

period I is defined similarly. Based on this definition, heBeand I both take positive integer



values. To simplify analysis, we assume perfect sensiag,the length of the sensing period is

zero, and the sensing outcome is error-free.

A. Formation of a one-dimensional Markov Chain

Assume that thé-th PU busy-idle cycle observed by the SU consist®pfbusy slots and,

idle slots. To model the dynamics of the number of SU packetheé system, we define

Xék) = {Number of SU packets at the beginning of th¢h busy period
v{® = {Number of SU packets at the beginning of th¢h idle periog
Xi(’“) = {Number of SU packets at the end of théh slot of thek-th busy period,l <i < By}
Yj(k) = {Number of SU packets at the end of tli¢h slot of thek-th idle period,1 < j < I}

Clearly, we haveYI(f) = Xo(k“) because the number of SU packets at the end ofktte
idle period equals the number of the SU packets at the begjnofi the (k + 1)-th busy period.
Similarly, Yo(k) = ng) also holds. The dynamics of the number of the SU packets imcteized

by the sequence of random variables

1 1 1 1 1 1 1 1 2 2 2 2 2
X0, X0 XDy O y® y® Ly yOox® x® XD vy,

1_

The above sequence of random variables does not form a Matian, because the number of
SU packets at time. depends on how long the PU channel has been in a busy/idee €at
can overcome this problem by tracking not only the numberlWfp&ckets, but also the elapsed
time from the last busy-idle change. This approach, howeesults in a Markov chain with a
large two-dimensional state space and thus yields prolebtiomplexity.

Our approach is based on the observation that the sequeneaddm variables{XO(k), k =
1,2,---} at the beginning of each busy-idle cycle forms a Markov chirother words, we can
treat each busy-idle cycle as a single step in a discrete{iffarkov chain and average over the
lengths of the busyl/idle period8 and I to compute the one-step transition probability matrix

PW. Specifically, we define

P = PO = X = i) = PO = j1x§Y =), )



Next, we consider a typical busy-idle cycle and drop the xnkl¢o write

PY =PV, = j|X, = i) = ZP » = Jj1Xo=1)P(I =v)
= [Zp(n:ﬂxozi,B:u)P(B:u) P(I =v). 3)

Note that the ternP (Y, = j| X, = i, B = u) in (3) depends on the threshdldof the transmission
policy. Details for computing?® can be found in Appendix A. Assume that the steady-state
distribution of the Markov chain is = (mg, 7, -+, 7, --) Wherem, denotes the probability
that there arem SU packets at the beginning of a busy period. We can 4inay solving the
equationtP") = 7. The average number of SU packets at the beginning of a blsyydle
thus equalsF(Xy) = i i

B. Calculation of Average Delay

The average number of the SU packets in the system is given by

EXo+ - +Xpa+Yo+---+Yi4)
HB + pr '

N= 4)

Following Little’s formula [10], the average delay i€=N/p— 1. HereW excludes the time slot
that the SU packet is transmitted.

In Appendix B, we show thaty’ can be computed as

E(Xo) 1 { Vp — UB p—l a
-1+ + +——>» Pl =v)(v—-1)
5 TPESPT p( 5 NBNI) 5 ; (I =v)(v-1)

+ 2 PUZU)((Z%U@HU—P—1)(p—1)r+p(v_r_21)(v_r))

v=I+1

W =

+Y P(I=v)> P(Y,=0)(v—1-n)+ ZP )Y P(Y, = 0)(0—1—71)}, (5)

v=1 n=0 v=I+1 n=0
where P(Y,, = 0) = Z mP(Y,=0/Xo=14),n=1,--- ', has been computed in (3).

C. Calculation of Collision Probability

Given the threshold’, an SU transmits during theth slot of an idle period it < I'" and the
number of packets at the end of thie-1)-th idle slot (at the beginning of theth idle slot) is



greater than zero, i.eY;_; > 0. This transmission will result in a collision if the PU retgr

during thet-th slot, i.e.,I = t. Hence, we can compuje as

—

r
P(Y,-1 >0) = ZP P(Y,_1 = 0)], (6)

t=1 t=1

where E(N,) is the average number of PU packets per busy period. Here weusad the fact

thatat most one packet collision occurs for each busy-igtdecassuming perfect sensing.

V. ANALYTICAL APPROXIMATIONS FOR THE THRESHOLD POLICY

In this section, we derive analytical approximations foe tthelay and collision probability
under the threshold policy. We first adopt the steady-staddyais to obtain a key approximation
for E(Yy), the average number of packets at the beginning of an idlegeBased on this

approximation, we further analyze the delay and collisienfgrmance.

A. Approximation of E(Yj)

Let ny = E(Yp) andny = E(Xo) = E(Y;). We will first derive an analytical expression to
approximate//(Y;), assuming that the number of packets at the beginning oflampétiod equals
ny. This leads to an approximation ef, as a nonlinear function of;. This function, combined
with the simple relation that, = n; — pug, will be used to findn;.

We first derive an approximation t&(Y;) as follows:

B0~ [ B0 = n)fi(0)de @)

To evaluate (7), we break the integral into three parts.ihét, n,) = E(Y,|Yy = ny). We have

% I o0
E(Y7) %/0 fl(v)m(v,nl)alv—|—/L fj(v)m(v,nl)dv—l—/F fr(w)m(v,ny)dv. (8)

Here we have used the fact that given= n,, the average number of time slots required for the
number of SU packets to first reach zeroﬁs. Hence, to ensure system stability, the threshold
I’ must satisfyl’ > 7. Next, we computen(v, n,) for each integral term in (8).

First, whenv < ln_—lp < I', we havem(v,ny) =~ n; + v(p — 1) because during an idle period
of lengthv, on average there are a total @f new packet arrivals and a maximum ofpacket

departures. Second, whe#, < v < TI', we havem(v,ni) ~ p. This is because on average the
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SU queue length reaches zero af{@g time slots. Each new packet that arrives afterwards will
be transmitted during the next time slot, except for the nenva that occurs in the last slot
of the idle period. This implies that with probabilipythere is one packet at the end of the idle
period and with probability — p there is no packet in the queue. Third, Wh—lé_i% < I <w,the
SU packets that are still in the system by the end of the idimgere new arrivals fronfl’, v].
Hence, we haven(v,n;) = p- (v —T).

When the system is in steady-state, we ha\&;) = ny = n; — pup. It follows from (8) that

1”71;) T S
- p / (1 + v(p — 1)) fr(v) do + / (v do+ / p-(0—T)fi(v) dv. (9)

n
1-p

We can solve (9) to obtaim;, sometimes in closed-form, as shown in the examples in@evtD.

B. Delay Approximation

We first introduce some notations. Léf(z,v) and dz(z,u) denote the average delay of
a packet that arrives unit times after the start of an idle period of length or after the
start of a busy period of length, respectively. The total average delay due to packets that
arrive during the idle period of a cycle, and the busy periddaccycle, are then given by
Wr = [;°f) di(z,v)da fr(v)dv and Wy = [ [ dp(z, u)dz fz(u)du, respectively. We then
apply the renewal theory [10] to obtain an expression foraerage delay of a packét as

1

W =
B+ Hr

(Wi +Wp), (10)

where the termug + u; is the average length of a busyl/idle cycle.

1) Approximation of 1W;: The average delay of a packet depends on the arrival iimes
well as other parameters includingv, n;. We find that the following three classes of packets
contribute dominantly td7;. The average delay of each class of packet is computed asvéoll

A packet is defined as a class 1 packet if- I andz € (I',v). Such a packet will remain
in the queue by the end of this idle period, and hence will Bepee a substantial delay. We
approximated;(x,v) by d;(z,v) =~ (v —z)+p- (zr —I') + up, wherev — x is the residual idle
time, p - (z — I') is the queueing delay due to packet arrivalglinv], and up is the average

delay incurred by the next busy period. Here we have ignorgdramaining SU packets in the
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gueue by timd", and we also assume that this class 1 packet will be trareshitiiring the next
busy-idle cycle. Hence, the total average delay due to dlaSb packets is given by

o0

L, = /FOO (/Fv dr(z,v) dx) fr(v)dv ~ /1“ (v—T) (uB + ! ;p(v - F))f[(v)dv. (11)

A packet is defined as a class 2 packet if i andzx € (0, I"Tlp). Such a packet is likely to
be transmitted before the end of the idle period, and th{s, v) ~ ny +pr—x = n; + (p—1)x.

Hence, we have

nq nq

Ly = /OO (/O di(z,v) dx)fl(v)dv ~ /OO (/0”’(n1 +(p—1)z) dx)fl(v)dv

1-p 1-p
2

n o
s [, il (12)

A packet is defined as a class 3 packet i€ (0, 1%). Such a packet will not be transmitted
until the next busy-idle cycle, which leads @(x,v) ~ n; + (p — 1)x 4+ pup. Thus,

ni

L?,:/Oﬁ (/Ovd[(x,v) dx)fl(v)dvz/o% (/0 [+ 1+ (p — L)) de| fr(v)do

ny

= [T [+ e+ o= 0] e (13)

We then combine (11), (12), and (13) to obt&ify ~ L, + Ly + Ls.

2) Approximation of Wz: Consider a packet that arrivesunit times after the start of a busy
period. Thendz(x,u) includes only the average queueing delay+ pz and the residual busy
time v — x, assuming that the packet is transmitted in the current/lulieycycle. If a packet
is not transmitted until the next busy-idle cycle, for imste, if ny + px > min(v, "), wherev
is the length of the idle period following the current busyipé, thendz(z,u) has to include
additional delay due to the residual idle time beyahdnd the delay due to the next busy period.

Thus, we writeWWp ~ R + Ry, where

oo pu 1 o
Rp = / / (no + pr +u—x) defp(u)du = noup + % / UZfB(“)d% (14)
o Jo 0

and let Ry include the additional delay associated with the packets tbmain in the queue

by the end of the current busy-idle cycle. These will wait &other busy-idle cycle before
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transmission. Next, we classify all SU packets that coatalto Ry into three classes and let
Ry, denote the contribution of clagspacket toRy, wherei = 1,2, 3.
A packet is defined as a class 1 packet ik ny < I'. Such a packet has to wait for one more

busy period for transmission, and thus

o= [ ( [ ([ nie )fB<u>du) filwdo =iy [ fite)as. (15)

A packet is defined as a class 2 packet i€ (ng,I') andz € (%,u). Such a packet will

also have to wait for one more busy period for transmission.

Ry, ~ /n g ( /i < /“_ ppdr ) fB(u)du) fi(v)dv. (16)

0

A packet is defined as a class 3 packet i (I', 00) andz € (%,u). Such a packet will have

to wait for the residual idle time — I" and one busy period for transmission. Hence, we obtain

Ra, ~ /F N ( /i ( /F;(MB o T)dr ) fB(u)du) F1(v)dv. (17)

Using (14)—(17), we obtaifl’z ~ Rp + Ry1 + Rn2 + Rys.

Finally, we put things together to obtain the following agxmation forV as

1
W =~
e+ Ur

<L1 + Lo+ Ls+ Rp + Rn1 + Rno + RN3>. (18)

C. Collision Approximation

Assuming that on average there are a totahpfpackets at the beginning of an idle cycle.
It then takes approximately%p time slots for the SU queue length to reach zero. If the PU
returns before., a collision will occur with probability 1. If the PU returrtsetween[;, '],

a collision occurs with probability, because this is the probability that there is one SU packet

in transmission during the time slot that the PU returnssiields the following approximation

e r
Pe R %(/0 fr(v)dv +p/n1 f[(v)dv). (29)
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D. Examples

The approximations fofV andp. given in (18) and (19) are applicable to general busy and
idle distributions. Next, we present several examples iithvive obtain closed-form expressions
of such approximations.

Example 1: Fixed Busy Distribution and Uniform Idle Distribution. Assume thatf;(¢) follows
a uniform distribution in[0, 2x;], and the busy period is fixed to he;. We first solve (9) to

obtain

20 s = [0 - P = p(1 - P[0~ 1)+ o] @0

For the delay approximation (18), we apply (11)—(13) to obta

1 n? n
Lim o (2 = TP (14 p) + 2 2y =T, Ly oo (20— ),

12 4 T4l - 1—
2/u 3 i1 (1 —p)ur (21)
Ly ~ ni(ni+pp) ny
Apr(1—p)*  12p7(1 = p)*’
and apply (14)—(17) to obtain
i nofi php
Rp ~ nopp + (1 +P)7; Ry, ~ 20 ; Ny ~ 4—M1; Ry, = 0. (22)
The collision probability can be computed from (19) as
Pe ny + pl). (23)

~ QNIE(N:D)<

Example 2: Exponential Busy distribution and Uniform Idle Distribution. Since this example
differs from Example 1 only in the busy distribution, botHJZand (23) remain unchanged, and
we replace (22) by

n 3 ng—TI
Rp = pp(1+p) +nops; Ry, = s, Ry, ~ B <1_€MB)
211 (24)

1 F ng—T
RNS ~ ,uB(Qluj — F) (5 — 4—11” + 5—Z)€ PEB

Example 3. Fixed Busy Distribution and Weibull Idle Distribution. We consider a Weibull idle

t2 .
distribution with scale parameterand shape paramet2rsuch thatf;(t) = %e‘ﬁ. To estimate
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ny, we solve (9) to obtain

- p I 2p pp
~ A1 — finv( ——erfc(—) + ————= ). 25
ny (1—p) ermv(l_perc()\)Jr(l_p)ﬁ)\) (25)
Here erfx) is the error function, erfin\e) is the inverse error function, and effg is the

complementary error function. For the delay approximafib®), we apply (11)—(13) to obtain

F2

e 2 —Tymerfe(y)  pppr 7 r n?  ___n
Ly =~ A ~_erfc(— Lo ~ 1 22(1—p)2
L oT(1.5) s 2 o) L~ gg— e
L %uz(nﬁuB)(Aﬁerf( - e_ﬂﬁpﬁ) (20)
’ 2 "A1l-p) 1-p

(1-p) 2[ nj i

— - (1 — TW]
K1 9 A ( + A2(1 _p)z)e

and apply (14)—(17) to obtain
17 o
Rp ~ 73(1 +p) +nops; Ry, ~ph(l—e 3), Ry, =0.
_(pu3+no)2

Ry, = pup —uB—;ﬂLpuBﬂLpnoe T+ (27)

n 3 T n +n
MB(;O — pno + pp)e” ¥ + mu% <erf(yo) _ erf(%)),

The collision probability is computed from (19)

1 ot d :
o g+ )
p

VI. NUMERICAL RESULTS

In this section, we present numerical results to examinep#rormance of the proposed
threshold policy and the accuracy of the developed analysism Section VI-A to Section
VI-D, we assume perfect sensing with zero sensing time arat-fee sensing outcome. The
PU/SU packets have the same fixed length. In Section VI-E wesider the imperfect sensing

scenarios.

A. Comparison of Threshold Policy and MDP Policy

In Fig. 2, we compare the delay performance of the thresholatypand the MDP policy

computed from the discounted MDP formulation describe®in lHere we assume that the busy
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period is fixed to beuz = 100 and each PU/SU packet has a fixed packet length of one. The
length of the idle period is uniformly distributed jA, 300] with meany; = 150. The capacity of
this system equal§’ = 0.114 under the collision probability constraint= 0.001 [6]. For each
SU packet arrival rat@, we can find the corresponding threshéldor the threshold policy such
that p. = n and then find the delal#” under this threshold policy. Using the MDP formulation,
for eachp, we adjust the cost’,, to find an MDP policy so thap. = n and evaluate its delay.
In Fig. 2, we plot the delay achieved by the threshold policgl he MDP policy as a function
of p. It is shown that the threshold policy performs very clogelyhe MDP policy for the entire
range ofp considered. In Fig. 3, we compare the two-dimensional trés&on regions of the
MDP policy and the threshold policy fgr = 0.11. The threshold policy hak = 94. The MDP
policy is a function of both the elapsed idle timend the queue length/. The SU transmits
when (¢, M) falls into the region to the left of line 2 shown in Fig. 3. Aspmsed to the MDP
policy, the threshold policy is independent of the queu@tlerand its transmission region is to
the left of line 1 (corresponding tb< I" = 94). It is interesting to note that the corner point of
the MDP curve(t, M) = (91, 1) is very close to the threshold of the threshold policy. While
the transmission region of the MDP policy is larger than tbiathe threshold policy, the two
policies yield similar delay performance. This is because probability that¢, /) belongs to
the middle region (between line 1 and line 2) is small. Thedafion the delay performance is

thus negligible.

B. Accuracy of Markov Chain Analysis and Analytical Approximations

In Fig. 4 and Fig. 5, we examine the accuracy of the Markov rctaialysis, developed in
Section IV, and the analytical approximations for the delagl the collision probability, developed
in Section V, for the threshold policy under various comhbimas of busy and idle distributions.
Here we fix the SU packet arrival rate and plét and p. as functions of the threshold. The
curves for the Markov chain analysis are numerically evadi&rom (5) forlt” and (6) forp.. The
analytical approximations for/” andp. are obtained from (18) and (19), using the closed-form
expressions presented in Section V-D.

In Fig. 4, we consider an exponential busy distribution andiéorm idle distribution, assuming

p = 0.11. It shows that the Markov chain analysis matches the sinomatsults perfectly. For
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each simulation point, we run a total af” busy-idle cycles to achieve reliable results. For
the Markov chain analysis, we find that a total 2if0 states is sufficient to obtain accurate
numerical results. Following Example 2 in Section V-D, waleate the closed-form analytical
approximations forl¥ and p.. We observe that both approximations are very tight, yigldi
errors less thas% — 4%. While similar results have been obtained for Example 1 vadiéxed
busy distribution and a uniform idle distribution, the riéssware not included here due to space
limitation.

In Fig. 5, we consider the fixed busy distribution and the Whkildle distribution. Since
the Weibull idle distribution yields a higher capacity 6f = 0.213, we choose a highey =
0.2 to operate near capacity. While the Markov chain analysisares accurate, the analytical
approximations from Example 3 in Section V-D become loosengared to the case of the
uniform idle distribution shown in Fig. 4. The error of thelae approximation is roughly%
except for the left-most point in Fig. 5 (a), correspondiad’t= 66. Note that the delay increases
rapidly in this region, and some of the SU packets might needdit for more than two busy-
idle cycles for transmission. This is not taken into accaannthe analysis presented in Section
V, which may contribute to the inaccuracy of the approximatat this point. The error of the

collision approximation is abowt% in the case.

C. Comparisons of Various Busy Distributions

In Fig. 6, we examine the effect of the busy distribution oa tlelay and collision probability.
We consider four different busy distributions with the samean: the exponential distribution,
the uniform distribution, the Weibull distribution, andetliixed busy distribution. It is shown in
Fig. 6 (a) that the busy distribution affects the delay digantly. Out of these four distributions,
the exponential busy distribution and the fixed busy diatrdn induce the largest delay and the
smallest delay, respectively. On the other hand, given #émeesthreshold, Fig. 6 (b) shows that
the collision probability changes only slightly with busisulibutions.

D. Comparisons of Various Idle Distributions

Next, we examine the effect of idle distribution on the SUaglelinder the packet collision
constraint. We assume a uniform busy distribution and camghree idle distributions with the

same meap; = 150: uniform, Weibull, and exponential. For the first two idlestglibutions and for
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eachp, we determind’ of the threshold policy such that the collision probability=n = 0.001.
For the exponential idle distribution, due to its memorglpsoperty, it is optimal to use a greedy
policy, under which the SU transmits whenever the channelerssed idle and the SU queue
is nonempty. Givem = 0.001, the time capacityC’ = 0.06, 0.114, 0.213, for the exponential,
uniform, and Weibull distribution, respectively.

In Fig. 7, we plot the delay achieved by the threshold polisyaafunction ofp under the
collision constraint of) = 0.001. For each idle distribution, there exists sopfesuch that when
p < p*, the threshold policy becomes the greedy policy. We find that 0.06, 0.075, 0.095
for the exponential, uniform, and Weibull distributionspectively. Fig. 7 shows that the delay
achieved by the threshold policy under these three idlaibligions are similar in the region
p < p* where the greedy policy is the optimal policy. For the expuiaé distribution,p* = 0.06
is the highest arrival rate such that does not exceed. In comparison, the capacity of the
uniform distribution is higher. Therefore, in the regipre [0.075,0.114), a threshold policy can
be found to ensure thai. = n at the cost of increased delay. We note that the delay adhieve
by the threshold policy increases rapidly aspproaches the capacity 6f114. The Weibull
distribution has the highest capacity. Wher [0.095, 0.2], the delay achieved by the threshold

policy increases witlp, but at a slower rate than that of the uniform idle distribnti

E. Imperfect Sensing

The analysis developed in this paper assumes perfect gewsiere the sensing time is zero
and the sensing outcome is error-free. Next, we examine meaiéstic scenarios in which the
sensing is imperfect, and compare the delay and collisiababilities with those of perfect
sensing. In Fig. 8, we plotV and p. for various sensing scenarios. The busy distribution is
a uniform distribution withug = 100 and the idle distribution is a uniform distribution with
wu; = 150. The PU packet has a fixed length of 1ms. Each SU slot is 1ms ianghich 5%
is for sensing, and5% is for transmission. We first consider three imperfect sensicenarios
where the miss detection probability,s = 1073, and the false alarm probability varies from
0.01 to 0.2. Note that it is important to sehq low in order to limit collision with the PU. Due
to the possibility of false alarm, the SU will determine thmanisition from an idle period to a

busy period only when, within an idle period, the PU chansedetected to be busy for several
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consecutive sensing periods. Similarly, due to the pdggibif miss detection, the transition from
a busy period to an idle period is determined only when, withibusy period, the PU channel
is detected to be idle for a few consecutive sensing periddsshown in Fig. 8, botiHV and

p. decrease as; decreases. As a performance benchmark, we also considerta foperfect
sensing scenario, for which the system setup, such as thdddldwation, and the lengths of
the sensing period and the transmission period, is iddrtticthe other three imperfect sensing
scenario except that now we sgty = 7 = 0. This is the best performance that one can achieve
for the given system setup with nonzero sensing time. Figndvs that indeed the curves for the
fourth imperfect sensing scenario withg = ~ = 0 are very close to that of the analytical curve
obtained from (18) and (19), which assumes error-free sgnsiitcome and zero sensing time.
We also observe from Fig. 8 (b) that fpr, the analytical curve gives close approximation to all
four curves of imperfect sensing scenarios, where the saiggp is less thaé%. In comparison,
imperfect sensing has a stronger effect Idh As shown in Fig. 8 (a), the gap between the

imperfect sensing curves and the analytical curve beconoee pronounced as increases.

VII. CONCLUSIONS

In this work, we propose and analyze threshold-based triasgm policies to minimize the
delay performance of the SU subject to a collision constramthe PU. Such threshold policies
are shown to perform closely to an optimal policy found tlglowa discounted MDP formulation.
A novel Markovian approach is developed to analyze the dalay collision probabilities of
the threshold policies. This approach treats each busyfd) cycle as a one-step transition
in the Markov chain, which effectively reduces the stataegpof the Markov chain to facilitate
numerical computations. Furthermore, we develop analygixpressions to approximate the delay
and collision performance of the threshold policies undaragal busy and idle distributions. The
accuracy of the proposed approximation is confirmed nurakyidor several commonly used
busy and idle distributions. Furthermore, we show that thgyktime distribution significantly
impacts the delay performance of the SU, while the colligiarbability and the threshold policy
are largely determined by the idle distribution. This is aldabservation of the results of [6],
[5], which shows that the PU idle time distribution largelgtermines the SU capacity. Future
work includes extension of the existing analysis to moreegainscenarios such as arbitrary SU

arrival processes, multiple PU channels, and multiple SUs.
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APPENDIX A

COMPUTATION OF THE TRANSITION PROBABILITY MATRIX

During the busy period we havg, = X,,_;+ @, where( is a Bernoulli random variable with
parameterp. For then-th idle time slot such that < I', we haveY,, = max(Y,_1 — 1 + @, 0)
because in this time slot we have at most one SU packet depantial one new packet arrival.
Note that onceY,, = 0 or Y,, = 1 for some time slot,, then we haveyY, = 0 or 1 for every

n < v < I'. This can be used to show that, for every 2 andv < T,

v+ u

P(Y,=j|Xo=14,B=u) = < )pvﬂ_i(l — p)uTIt (29)

v+ —1
In (29) we use the fact that singe> 2, we must have’,, > 2 for all 1 < n < v and thus we
have exactly packet departures by time slot Hence, the number of new packet arrivals out of
u busy slots and idle slots isv 4 j —i. Then we arrive at (29) using the binomial distribution.
To computeP(Y, = j|Xo = i,B = u) for j = 0,1, andv < I', we follow the iterative
relations:
P(Y, =0[Xg=14,B=u) = (1—p)[P(Y,1 =1|Xo =i, B=1u) + P(Y,.1 = 0|Xo =4, B =u)],
PY,=1Xo=t,B=u)=(1-p)P(Y,_1=2|Xo=4B=u)+pP(Y,.1=01Xo=1,B =u)
+pP(Y,o1 =1|Xo =1, B =u)
— (1=p)P(Yy1 =2|Xo=i,B=u)+ lf'%pp(yv — 0| X, =i, B = u).

Whenv > T'+ 1, the SU does not transmit. It is sufficient to take into act¢dhba possibility of

a new packet arrival to obtain

P(Yors = jXo = i, B=u) = (1= p)P(Y, = j|Xo = i, B = u) + pP(Y, = j — 1|Xo = i, B = u).
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APPENDIX B
PROOF OF(5)
We will first computeN using (4). SinceX,, = X,,_; + @, where@ is a Bernoulli random

variable with parametes, we haveFE(X,) = E(X,) + np. Hence,

—
S
|

—

o u—

E(X0+X1+~-~+XB_1):ZP(B:U) E(X ZP (E(Xo) + np)

= E(Xy) ZuP(B = g(ZP (u— 1)u) = upE(Xo) +

To computeE (Y, +Yi +---+ Y7_;), we have

3

Il

=)
3
Il
o

(vB — uB). (30)

N3

v—1
E(Yo+Yi + - +Yi)= ZP ) > E(Y,)
n=0
I v—1 I v—1
= > PI=v)) EY,)+ Z P(I =) (Z E(Y,)+ Y E(m). (31)
v=1 n=0 v=I+1 n=0 n=I'+1
Note that for everyn < T', we haveY,, = max(Y,,_; — 1 + @, 0). It follows that
n—1
E(Y,)=E(Y,_1)+ (p— 1)+ P(Yous =0) = E(Yy) +n(p— 1) + > _ P(Y; =0).
=0
Hence, for every < I'+ 1, we have
v—1 v—1 n—1
E(Y, Z( (Yo) +n(p 1)+ZP(1§:0))
n=0 n=0 =0
('U N 1)U v—1 n—1
= vE(Yo) + (p— 1) - P(Y, = 0)
n=0 =0
(v—1) 2 ,
=vEYy) +(p—1) 5 T P(Y;=0)(v—1—1). (32)
=0

For everyn > T'+ 1, we haveY,, =Y,,_; + @ and hencef(Y,,) = E(Y,_1) + p. It follows that

;lE(Yn) = ;1 (E(Yr) +(n — F)p> — (0T = D)E(Yy) + pv—T —21)@ )

_ (v—F—l)(E(Yb)+(p—1)F+2P(Y;:0)> +p(”_r_21)(”_r). (33)

=0
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Noting that£(Yy) = pugs + E(Xo), we substitute (32) and (33) into (31) and combine the result
with (30) andiW=N/p — 1 to obtain (5).
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V]

SU sense SU transmit
l collision
PUtransmit | gl " | P return|
t=1 t=2 t=3 t=k
time

Fig. 1. lllustration of the system model. Each SU slot cassi$ a sensing period and a transmission period. A collisicaurs
in the k-th SU slot, when the SU starts transmission after sensiadth channel to be idle, and the PU returns before the end
of the SU transmission period.
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Fig. 2. Comparisons of the threshold policy and the MDP polar a fixed busy distribution and a uniform idle distributio
For eachp, a threshold policy and an MDP policy are found such that n = 0.001.
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Fig. 3. Transmission regions of the MDP policy and the thoésipolicy for a fixed busy time distribution and a uniformedl
distribution. Assumep = 0.11. The two policies are found such that = n = 0.001.
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