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Delay Performance of Threshold Policy

for Dynamic Spectrum Access

Rong-Rong Chen∗, and Xin Liu

Abstract

In this paper, we study the delay performance of secondary users (SU) under dynamic spectrum

access. We design simple time-threshold policies for the SUto minimize the average delay while

satisfying the collision probability constraint of the primary user (PU). Such policies perform closely to

an optimized policy found by a Markov Decision Process (MDP)formulation, while facilitating analytical

analysis of the delay and collision probability. For general busy and idle period distributions, we analyze

the performance of the threshold policy through a one-dimensional Markov chain, and develop analytical

expressions to approximate the delay and collision probability. The accuracy of the Markov chain analysis

and the analytical approximations are examined under various busy and idle distributions. The capacity.

impact of the busy and idle distributions on system performance are investigated. We find that while

the idle distribution determines the time capacity, the busy distribution significantly affects the delay

performance of the threshold policies.

Index Terms

Cognitive radio, dynamic spectrum access, delay, collision probability, threshold policy, Markov

decision process.

I. INTRODUCTION

Cognitive Radio (CR) technology has great potential to alleviate spectrum scarcity in wireless

communications. It allows secondary users (SUs) to opportunistically access spectrum licensed

by primary users (PUs) while protecting PU activity. This new paradigm is typically referred to

asdynamic spectrum access (DSA) [1]. In this paradigm, because the protection of PU is vital, a

design imperative for an SU opportunistic access strategy is to minimize the SUs’ effect on PU

transmissions. For instance, the SU must guarantee that thecollision probability of a PU packet
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is less than a threshold specifieda priori by the PU. This type of constraint on the collision

probability has been widely considered in the literature [2]– [5].

In this paper, we conduct analytical study of the delay performance of the SU under a collision

constraint for the PU. This work is inspired from [6] in whichthe time capacity of the SU access is

established under a collision constraint, assuming that the PU activity follows a general busy/idle

time distribution. While we consider the same PU model as that of [6], in this work we adopt

a different SU model to address a new problem in the design of transmission policies for DSA.

The goal is to reduce the SU’s access delay under PU protection, and to characterize the delay

performance of the SU under these policies. In [6], the SU is assumed to be always backlogged

in order to determine the time capacity. Thus, whenever a good spectrum opportunity appears,

the SU can transmit. In comparison, in this work we assume that the SU’s packet arrival follows

a Bernoulli arrival process. Therefore, even when a good spectrum opportunity appears, the SU

may not be able to transmit if it has an empty queue. Thus, due to the dynamics of the SU

queue, the delay analysis developed here involves new techniques that are significantly different

and more challenging than those of [6]. The threshold policies developed here, for minimizing

delay, are also different from those found in [6], despite the similarity in the structure of these

policies.

In this work, we first establish the SU’s optimal access policy to minimize delay for general

busy/idle time distributions using a Markov Decision Process (MDP) formulation. While the

MDP provides an optimal policy, its calculation is cumbersome and provides little insight. This

motivates us to develop a simple and more structured threshold policy that achieves near optimal

performance. The main contribution of this work is that we analyze the performance of the

threshold policies through a Markovian analysis, and develop closed-form approximations of

the delay and collision probability for such policies undervarious PU busy/idle distributions.

Numerical results confirm the accuracy of our approximations.

This work differs from other related work on the delay analysis for DSA networks in that

we explicitly consider the collision constraint in the delay analysis, which is missing in other

work such as [7]. Furthermore, our work considers general busy/idle time distributions, which

also differs from that of [8] where the analysis is developedassuming exponentially distributed

busy/idle time. We assume the PU activity to be unslotted, asopposed to [5], which assumes a
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slotted structure. Due to the technical challenges of the theoretical analysis, in this paper we limit

ourselves to consider the case of a single SU accessing a PU channel, possibly shared by multiple

PUs. In the analysis we also make the idealized assumption ofperfect sensing and provide only

numerical results for the imperfect sensing case. Extensions of the analysis to the more realistic

case of multiple SUs and multiple PU bands are important directions for future research, but are

out of the scope of this paper.

The remainder of the paper is summarized as follows. In Section II, we introduce the system

model that characterizes the PU and SU activities. In Section III, we present the optimal MDP

policy and the time-threshold policies. We analyze the performance of the threshold policies

in Section IV through Markovian analysis, and derive closed-form analytical expressions to

approximate the delay and collision probabilities of such policies in Section V. Numerical results

are presented in Section VI. Finally, we conclude in SectionVII.

II. SYSTEM MODEL

In this section we describe our system model. We consider onespectrum band that is assigned

to the PU, and one SU that opportunistically exploits the spectrum opportunities vacated by the

PU under the protection requirement of the PU. While it is possible that there are multiple PUs

sharing the spectrum band, we assume that the SU does not distinguish among different PUs,

and can only access the channel when no PU is active. Thus, theSU treats all PUs collectively

as one “aggregated” PU in designing the spectrum access schemes.

A. Primary User Model

We assume that the PU activities follow an alternating busy-idle pattern. Multiple PU packets,

possibly with various lengths, are transmitted within a busy period. When all PU packets in

the queue have been transmitted, the PU channel becomes idle. The PU channel remains idle

until the arrival of the next PU packet, which is the start of the next busy-idle cycle. We denote

the sojourn time of the PU idle state asI, its probability density function (PDF) asfI(·), its

cumulative distribution function (CDF) asFI(·), its mean asµI =
∫

vfI(v)dv, and its second

moment asνI =
∫

v2fI(v)dv. Similarly,B, fB(·), FB(·), µB, νB represent the sojourn time of the

PU busy state, the pdf, the cdf, the mean, and the second moment, respectively. The percentage
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of time that the PU channel is idle isµI/(µI + µB), which is an upper-bound on the percentage

of time that the SU can transmit on the PU channel. Note that while our results are applicable

to arbitrary time-scales of the PU busy/idle time, the design of the DSA is simpler and it can

achieve higher capacity if the time-scale of the PU busy/idle time is relatively large compared to

that of a packet transmission time.

B. SU Model

We consider a packetized, time-slotted system for the SU. The SU has a fixed packet length that

is no greater than that of the PU. Smaller values of the SU packet length provide more freedom

for designing the SU access strategy. The arrival process ofthe SU is modeled as a Bernoulli

process such that with probabilityp an SU packet arrives in a time slot and with probability

1 − p there is no packet arrival. Each SU time slot consists of a short sensing period, followed

by a transmission period, as shown in Fig. 1. The SU senses thechannel during the sensing

period. If the channel is sensed busy, then the SU does not transmit in the remainder of the

time slot, and will sense the channel again in the sensing period of the next SU time slot. If the

channel is sensed idle, then the SU has the option to either transmit, or not transmit, according

to some transmission policy described in Section III. For example, the SU does not transmit in

time slot 2 after sensing, either because its queue is empty or because its transmission policy

decides so. If the SU transmits and the PU channel remains idle for the entire duration of the

SU transmission period, then the transmission is successful. Otherwise, in the event that the PU

returns in the middle of the SU transmission period, a packetcollision occurs. This is illustrated

in Fig. 1, where it shows that a collision occurs in time-slotk. For ease of presentation, in this

paper we do not consider PU/SU packet re-transmission in theevent of a collision, even though

such modifications should be straightforward. We also assume an infinite buffer size at the SU

and thus the packet dropping probability is not considered here.

C. PU Collision probability requirement

We denotepc as the average packet collision probability “perceived” bythe PU in the long-run,

given by

pc = lim sup
K→∞

∑K

k=0Nc(k)
∑K

k=0Np(k)
, (1)
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where Nc(k) and Np(k) are random variables representing the total number of collided and

transmitted packets of the PU in thek-th busy-idle cycle, respectively. The PU has a packet

collision probability requirement such thatpc ≤ η, which is imposed by either the PU or the

spectrum regulators and is known to the SUa priori. Under the assumption that the packet length

of the SU is no greater than that of the PU, and that the sensingoutcome of the SU is perfect,

we note thatthere is at most one PU packet collision within a busy-idle cycle, which may only

occur at the beginning of a busy period when the PU returns after the SU has already sensed

the channel to be idle and started a transmission. During the next SU time slot, the SU will

sense the channel to be busy and refrain from transmission, thus avoiding additional collisions

with the PU packets. The analysis developed in this paper is under such assumption. When the

sensing outcome is not error-free, the SU can possibly miss detect the PU activities, thus causing

multiple PU packets collisions within a busy period. We willaddress the latter scenario through

simulation in Section VI.

III. T RANSMISSION POLICIES FORM INIMIZING DELAY

In this section, we study transmission policies to minimizethe average queueing delay of

the SU under the collision constraintpc ≤ η. We assume that the SU has knowledge ofη,

and the PU busy/idle time distribution, i.e.,fI(·), and fB(·). An option to obtain an optimal

policy is to use the powerful tool of Markov Decision Process. In particular, the state space is

two-dimensional: time and queue length; and the action is either to transmit or not to transmit.

Through an MDP formulation, we compute the optimal transmission policy that minimizes the

average cost in an infinite horizon. The cost considered herehas two components: the delay cost

and the collision cost. The collision cost can then be adjusted numerically to meet the collision

probability constraint. Due to space limitation, we refer the readers to [9] for a detailed description

of the MDP formulation.

Using the MDP formulation, we can numerically calculate an optimal MDP policy to minimize

the delay while satisfying the collision probability constraint. However, the calculation is

cumbersome and with numerical errors (e.g., while both the number of packets in the queue

and the lengths of the busy/idle periods can go to infinity, wehave to truncate them in numerical

calculation). In addition, the MDP policy provides little insight on the relationship between delay

and other system parameters. Therefore, we are motivated tolook for a more structured policy.
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It is shown in [6] that, for the case of backlogged traffic, theoptimal SU transmission policy

that achieves the time capacity of a PU channel is a time-threshold policy, i.e, the SU should

transmit only when the elapsed time since the channel has been idle, denoted byt, is below a

thresholdΓ∗. The intuition behind this is that the SU should transmit only when the probability of

a collision with the PU is small. For most idle distributionsconsidered, [6] shows that conditioned

upont, the probability of a collision due to an SU transmission at time t is an increasing function

of t. This naturally yields a time-threshold policy so that the SU will transmit only whent is

below a threshold.

We can easily adapt the time-threshold policy of [6] here to the case when the arrival process

of the SU packets is dynamic. The time-threshold policy withthresholdΓ is defined such that the

SU will transmit only when the following three conditions are met. (i) the channel is sensed idle.

(ii) t < Γ (note that thisΓ is in general different from the thresholdΓ∗ that maximizes capacity).

(iii) the SU queue lengthM is greater than zero. The time-thresholdΓ should be adjusted to

satisfy the PU collision probability constraint. As shown in Sections IV and V, the simplicity

of time-threshold policies facilitates theoretical analysis of the delay and collision probability.

Furthermore, to examine the effectiveness of the time-threshold policy, we compare it with the

optimized policy found by the MDP formulation. We find that the time-threshold policy performs

very closely to the optimized the MDP policy despite its simplicity. This reveals that the elapsed

time t is the major factor that affects the delay and collision probability of a transmission policy,

hence justifies the usage of the time-threshold policy considered here.

IV. M ARKOV CHAIN ANALYSIS FOR THRESHOLD POLICY

In this section, we develop Markovian analysis to analyze the delay and collision probability

of threshold policies. Since the SU is not synchronized withthe PU, the SU can only estimate

the lengths of the PU busy and idle period through periodic sensing. In the remainder of this

section, the lengths of the busy and idle periods refer to thelengths of these observed by the

SU, which are integer multiple of the length of an SU time slot. For instance, if the SU detects

the PU channel to be busy forB consecutive SU slots (sensing is done only once within each

SU slot), then the length of the busy period (observed by the SU) is B. The length of the idle

period I is defined similarly. Based on this definition, hereB and I both take positive integer
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values. To simplify analysis, we assume perfect sensing, i.e., the length of the sensing period is

zero, and the sensing outcome is error-free.

A. Formation of a one-dimensional Markov Chain

Assume that thek-th PU busy-idle cycle observed by the SU consists ofBk busy slots andIk

idle slots. To model the dynamics of the number of SU packets in the system, we define

X
(k)
0 = {Number of SU packets at the beginning of thek-th busy period}

Y
(k)
0 = {Number of SU packets at the beginning of thek-th idle period}

X
(k)
i = {Number of SU packets at the end of thei-th slot of thek-th busy period,1 ≤ i ≤ Bk}

Y
(k)
j = {Number of SU packets at the end of thej-th slot of thek-th idle period,1 ≤ j ≤ Ik}

Clearly, we haveY (k)
Ik

= X
(k+1)
0 because the number of SU packets at the end of thek-th

idle period equals the number of the SU packets at the beginning of the(k + 1)-th busy period.

Similarly,Y (k)
0 = X

(k)
Bk

also holds. The dynamics of the number of the SU packets is characterized

by the sequence of random variables

X
(1)
0 , X

(1)
1 , · · · , X(1)

B1
= Y

(1)
0 , Y

(1)
1 , Y

(1)
2 , · · · , Y (1)

I1−1, Y
(1)
I1

=X
(2)
0 , X

(2)
1 , · · · , X(2)

B2
, Y

(2)
1 , Y

(2)
2 , · · ·

The above sequence of random variables does not form a Markovchain, because the number of

SU packets at timen depends on how long the PU channel has been in a busy/idle state. One

can overcome this problem by tracking not only the number of SU packets, but also the elapsed

time from the last busy-idle change. This approach, however, results in a Markov chain with a

large two-dimensional state space and thus yields prohibitive complexity.

Our approach is based on the observation that the sequence ofrandom variables{X(k)
0 , k =

1, 2, · · · } at the beginning of each busy-idle cycle forms a Markov chain. In other words, we can

treat each busy-idle cycle as a single step in a discrete-time Markov chain and average over the

lengths of the busy/idle periodsB and I to compute the one-step transition probability matrix

P (1). Specifically, we define

P
(1)
i,j = P (X

(k+1)
0 = j|X(k)

0 = i) = P (Y
(k)
Ik

= j|X(k)
0 = i). (2)
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Next, we consider a typical busy-idle cycle and drop the index k to write

P
(1)
i,j = P (YI = j|X0 = i) =

∞
∑

v=1

P (Yv = j|X0 = i)P (I = v)

=
∞
∑

v=1

[ ∞
∑

u=1

P (Yv = j|X0 = i, B = u)P (B = u)

]

P (I = v). (3)

Note that the termP (Yv = j|X0 = i, B = u) in (3) depends on the thresholdΓ of the transmission

policy. Details for computingP (1) can be found in Appendix A. Assume that the steady-state

distribution of the Markov chain isπ = (π0, π1, · · · , πn, · · · ) whereπn denotes the probability

that there aren SU packets at the beginning of a busy period. We can findπ by solving the

equationπP (1) = π. The average number of SU packets at the beginning of a busy-idle cycle

thus equalsE(X0) =
∞
∑

i=0

iπi.

B. Calculation of Average Delay

The average number of the SU packets in the system is given by

N =
E(X0 + · · ·+XB−1 + Y0 + · · ·+ YI−1)

µB + µI

. (4)

Following Little’s formula [10], the average delay isW=N/p−1. HereW excludes the time slot

that the SU packet is transmitted.

In Appendix B, we show thatW can be computed as

W =
E(X0)

p
− 1 +

1

(µB + µI)p

{

p
(νB − µB

2
+ µBµI

)

+
p− 1

2

Γ
∑

v=1

P (I = v)(v − 1)v

+
∞
∑

v=Γ+1

P (I = v)

(

(p− 1)
Γ(1 + Γ)

2
+ (v − Γ− 1)(p− 1)Γ +

p(v − Γ− 1)(v − Γ)

2

)

+
Γ

∑

v=1

P (I = v)
v−2
∑

n=0

P (Yn = 0)(v − 1− n)+
∞
∑

v=Γ+1

P (I = v)
Γ

∑

n=0

P (Yn = 0)(v − 1− n)

}

, (5)

whereP (Yn = 0) =
∞
∑

i=0

πiP (Yn = 0|X0 = i), n = 1, · · · ,Γ, has been computed in (3).

C. Calculation of Collision Probability

Given the thresholdΓ, an SU transmits during thet-th slot of an idle period ift ≤ Γ and the

number of packets at the end of the(t−1)-th idle slot (at the beginning of thet-th idle slot) is
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greater than zero, i.e.,Yt−1 > 0. This transmission will result in a collision if the PU returns

during thet-th slot, i.e.,I = t. Hence, we can computepc as

pc =
1

E(Np)

Γ
∑

t=1

P (I = t)P (Yt−1 > 0) =
1

E(Np)

Γ
∑

t=1

P (I = t)[1− P (Yt−1 = 0)], (6)

whereE(Np) is the average number of PU packets per busy period. Here we have used the fact

thatat most one packet collision occurs for each busy-idle cycle assuming perfect sensing.

V. ANALYTICAL APPROXIMATIONS FOR THE THRESHOLD POLICY

In this section, we derive analytical approximations for the delay and collision probability

under the threshold policy. We first adopt the steady-state analysis to obtain a key approximation

for E(Y0), the average number of packets at the beginning of an idle period. Based on this

approximation, we further analyze the delay and collision performance.

A. Approximation of E(Y0)

Let n1 = E(Y0) and n0 = E(X0) = E(YI). We will first derive an analytical expression to

approximateE(YI), assuming that the number of packets at the beginning of an idle period equals

n1. This leads to an approximation ofn0 as a nonlinear function ofn1. This function, combined

with the simple relation thatn0 = n1 − pµB, will be used to findn1.

We first derive an approximation toE(YI) as follows:

E(YI) ≈
∫

∞

0

E(Yv|Y0 = n1)fI(v)dv. (7)

To evaluate (7), we break the integral into three parts. Letm(v, n1) = E(Yv|Y0 = n1). We have

E(YI) ≈
∫

n1
1−p

0

fI(v)m(v, n1)dv +

∫ Γ

n1
1−p

fI(v)m(v, n1)dv +

∫

∞

Γ

fI(v)m(v, n1)dv. (8)

Here we have used the fact that givenY0 = n1, the average number of time slots required for the

number of SU packets to first reach zero isn1

1−p
. Hence, to ensure system stability, the threshold

Γ must satisfyΓ > n1

1−p
. Next, we computem(v, n1) for each integral term in (8).

First, whenv < n1

1−p
< Γ, we havem(v, n1) ≈ n1 + v(p − 1) because during an idle period

of lengthv, on average there are a total ofvp new packet arrivals and a maximum ofv packet

departures. Second, whenn1

1−p
< v < Γ, we havem(v, n1) ≈ p. This is because on average the
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SU queue length reaches zero aftern1

1−p
time slots. Each new packet that arrives afterwards will

be transmitted during the next time slot, except for the new arrival that occurs in the last slot

of the idle period. This implies that with probabilityp there is one packet at the end of the idle

period and with probability1− p there is no packet in the queue. Third, whenn1

1−p
< Γ < v, the

SU packets that are still in the system by the end of the idle period are new arrivals from[Γ, v].

Hence, we havem(v, n1) ≈ p · (v − Γ).

When the system is in steady-state, we haveE(YI) = n0 = n1 − pµB. It follows from (8) that

n1 − p µB ≈
∫

n1
1−p

0

(n1 + v(p− 1))fI(v) dv +

∫ Γ

n1
1−p

pfI(v) dv +

∫

∞

Γ

p · (v − Γ)fI(v) dv. (9)

We can solve (9) to obtainn1, sometimes in closed-form, as shown in the examples in Section V-D.

B. Delay Approximation

We first introduce some notations. LetdI(x, v) and dB(x, u) denote the average delay of

a packet that arrivesx unit times after the start of an idle period of lengthv, or after the

start of a busy period of lengthu, respectively. The total average delay due to packets that

arrive during the idle period of a cycle, and the busy period of a cycle, are then given by

WI =
∫

∞

0

∫ v

0
dI(x, v)dxfI(v)dv and WB =

∫

∞

0

∫ u

0
dB(x, u)dxfB(u)du, respectively. We then

apply the renewal theory [10] to obtain an expression for theaverage delay of a packetW as

W =
1

µB + µI

(WI +WB), (10)

where the termµB + µI is the average length of a busy/idle cycle.

1) Approximation of WI: The average delay of a packet depends on the arrival timex, as

well as other parameters includingΓ, v, n1. We find that the following three classes of packets

contribute dominantly toWI . The average delay of each class of packet is computed as follows.

A packet is defined as a class 1 packet ifv > Γ and x ∈ (Γ, v). Such a packet will remain

in the queue by the end of this idle period, and hence will experience a substantial delay. We

approximatedI(x, v) by dI(x, v) ≈ (v − x) + p · (x− Γ) + µB, wherev − x is the residual idle

time, p · (x − Γ) is the queueing delay due to packet arrivals in[Γ, v], andµB is the average

delay incurred by the next busy period. Here we have ignored any remaining SU packets in the
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queue by timeΓ, and we also assume that this class 1 packet will be transmitted during the next

busy-idle cycle. Hence, the total average delay due to class1 SU packets is given by

L1 =

∫

∞

Γ

(

∫ v

Γ

dI(x, v) dx
)

fI(v)dv ≈
∫

∞

Γ

(v − Γ)
(

µB +
1 + p

2
(v − Γ)

)

fI(v)dv. (11)

A packet is defined as a class 2 packet ifv > n1

1−p
andx ∈ (0, n1

1−p
). Such a packet is likely to

be transmitted before the end of the idle period, and thusdI(x, v) ≈ n1+px−x = n1+(p−1)x.

Hence, we have

L2 =

∫

∞

n1
1−p

(

∫

n1
1−p

0

dI(x, v) dx
)

fI(v)dv ≈
∫

∞

n1
1−p

(

∫

n1
1−p

0

(n1 + (p− 1)x) dx
)

fI(v)dv

=
n2
1

2(1− p)

∫

∞

n1
1−p

fI(v)dv. (12)

A packet is defined as a class 3 packet ifv ∈ (0, n1

1−p
). Such a packet will not be transmitted

until the next busy-idle cycle, which leads todI(x, v) ≈ n1 + (p− 1)x+ µB. Thus,

L3 =

∫

n1
1−p

0

(

∫ v

0

dI(x, v) dx
)

fI(v)dv ≈
∫

n1
1−p

0

(

∫ v

0

[

n1 + µB + (p− 1)x
)

dx
]

fI(v)dv

=

∫
n1
1−p

0

[

(n1 + µB)v + (p− 1)
v2

2

]

fI(v)dv. (13)

We then combine (11), (12), and (13) to obtainWI ≈ L1 + L2 + L3.

2) Approximation of WB: Consider a packet that arrivesx unit times after the start of a busy

period. ThendB(x, u) includes only the average queueing delayn0 + px and the residual busy

time u − x, assuming that the packet is transmitted in the current busy/idle cycle. If a packet

is not transmitted until the next busy-idle cycle, for instance, if n0 + px > min(v,Γ), wherev

is the length of the idle period following the current busy period, thendB(x, u) has to include

additional delay due to the residual idle time beyondΓ, and the delay due to the next busy period.

Thus, we writeWB ≈ RB +RN , where

RB =

∫

∞

0

∫ u

0

(n0 + px+ u− x) dxfB(u)du = n0µB +
1 + p

2

∫

∞

0

u2fB(u)du, (14)

and letRN include the additional delay associated with the packets that remain in the queue

by the end of the current busy-idle cycle. These will wait foranother busy-idle cycle before
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transmission. Next, we classify all SU packets that contribute toRN into three classes and let

RNi
denote the contribution of classi packet toRN , wherei = 1, 2, 3.

A packet is defined as a class 1 packet ifv < n0 < Γ. Such a packet has to wait for one more

busy period for transmission, and thus

RN1 ≈
∫ n0

0

(
∫

∞

0

(

∫ u

0

µBdx
)

fB(u)du

)

fI(v)dv = µ2
B

∫ n0

0

fI(v)dv. (15)

A packet is defined as a class 2 packet ifv ∈ (n0,Γ) andx ∈ (v−n0

p
, u). Such a packet will

also have to wait for one more busy period for transmission.

RN2 ≈
∫ Γ

n0

(
∫

∞

v−n0
p

(

∫ u

v−n0
p

µBdx
)

fB(u)du

)

fI(v)dv. (16)

A packet is defined as a class 3 packet ifv ∈ (Γ,∞) andx ∈ (Γ−n0

p
, u). Such a packet will have

to wait for the residual idle timev − Γ and one busy period for transmission. Hence, we obtain

RN3 ≈
∫

∞

Γ

(
∫

∞

Γ−n0
p

(

∫ u

Γ−n0
p

(µB + v − Γ)dx
)

fB(u)du

)

fI(v)dv. (17)

Using (14)–(17), we obtainWB ≈ RB +RN1 +RN2 +RN3.

Finally, we put things together to obtain the following approximation forW as

W ≈ 1

µB + µI

(

L1 + L2 + L3 +RB +RN1 +RN2 +RN3

)

. (18)

C. Collision Approximation

Assuming that on average there are a total ofn1 packets at the beginning of an idle cycle.

It then takes approximatelyn1

1−p
time slots for the SU queue length to reach zero. If the PU

returns beforen1

1−p
, a collision will occur with probability 1. If the PU returnsbetween[ n1

1−p
,Γ],

a collision occurs with probabilityp, because this is the probability that there is one SU packet

in transmission during the time slot that the PU returns. This yields the following approximation

pc ≈
1

E(Np)

(
∫

n1
1−p

0

fI(v)dv + p

∫ Γ

n1
1−p

fI(v)dv

)

. (19)
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D. Examples

The approximations forW and pc given in (18) and (19) are applicable to general busy and

idle distributions. Next, we present several examples in which we obtain closed-form expressions

of such approximations.

Example 1: Fixed Busy Distribution and Uniform Idle Distribution. Assume thatfI(t) follows

a uniform distribution in[0, 2µI ], and the busy period is fixed to beµB. We first solve (9) to

obtain

n1 ≈ 2(1− p)µI −
√

4(1− p)2µ2
I − p(1− p)

[

(

2µI − Γ
)2

+ 4µBµI

]

. (20)

For the delay approximation (18), we apply (11)–(13) to obtain

L1 ≈
1

12µI

(2µI − Γ)3(1 + p) +
µB

4µI

(2µI − Γ)2, L2 ≈
n2
1

4(1− p)µI

(

2µI −
n1

1− p

)

,

L3 ≈
n2
1(n1 + µB)

4µI(1− p)2
− n3

1

12µI(1− p)2
,

(21)

and apply (14)–(17) to obtain

RB ≈ n0µB + (1 + p)
µ2
B

2
; RN1 ≈

n0µ
2
B

2µI

; RN2 ≈
µ3
Bp

4µI

; RN3 = 0. (22)

The collision probability can be computed from (19) as

pc ≈
1

2µIE(Np)
(n1 + pΓ). (23)

Example 2: Exponential Busy distribution and Uniform Idle Distribution. Since this example

differs from Example 1 only in the busy distribution, both (21) and (23) remain unchanged, and

we replace (22) by

RB ≈ µ2
B(1 + p) + n0µB; RN1 ≈

n0µ
2
B

2µI

; RN2 ≈
pµ3

B

2µI

(

1− e
n0−Γ
p µB

)

RN3 ≈ µB(2µI − Γ)
(1

2
− Γ

4µI

+
µB

2µI

)

e
n0−Γ

pµB .

(24)

Example 3: Fixed Busy Distribution and Weibull Idle Distribution. We consider a Weibull idle

distribution with scale parameterλ and shape parameter2 such thatfI(t) = 2t
λ2 e

−
t2

λ2 . To estimate
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n1, we solve (9) to obtain

n1 ≈ λ(1− p) erfinv

(

p

1− p
erfc(

Γ

λ
) +

2p µB

(1− p)
√
πλ

)

. (25)

Here erf(x) is the error function, erfinv(x) is the inverse error function, and erfc(x) is the

complementary error function. For the delay approximation(18), we apply (11)–(13) to obtain

L1 ≈ µI

λe−
Γ2

λ2 − Γ
√
πerfc(Γ

λ
)

2Γ(1.5)
+

µBµI

Γ(1.5)

√
π

2
erfc(

Γ

λ
), L2 ≈

n2
1

2(1− p)
e
−

n2
1

λ2(1−p)2

L3 ≈ µI(n1 + µB)
(

λ

√
π

2
erf(

n1

λ(1− p)
)− n1

1− p
e
−

n2
1

λ2(1−p)2

)

− µI

(1− p)

2
λ2
[

1−
(

1 +
n2
1

λ2(1− p)2
)

e
−

n2
1

λ2(1−p)2

]

.

(26)

and apply (14)–(17) to obtain

RB ≈ µ2
B

2
(1 + p) + n0µB; RN1 ≈ µ2

B(1− e−
n2
0

λ2 ), RN3 = 0.

RN2 ≈ µB

(

− µB − n0

p
+ p2µB + pn0

)

e−
(pµB+n0)

2

λ2 +

µB(
n0

p
− pn0 + µB)e

−
n2
0

λ2 + µBpλ

√
π

2

(

erf(
n0

λ
)− erf(

pµB + n0

λ
)
)

,

(27)

The collision probability is computed from (19)

pc ≈
1

E(Np)

(

e
−

n2
1

λ2(1−p)2 (p− 1) + e−
1
λ2 − pe−

Γ2

λ2

)

. (28)

VI. NUMERICAL RESULTS

In this section, we present numerical results to examine theperformance of the proposed

threshold policy and the accuracy of the developed analysis. From Section VI-A to Section

VI-D, we assume perfect sensing with zero sensing time and error-free sensing outcome. The

PU/SU packets have the same fixed length. In Section VI-E we consider the imperfect sensing

scenarios.

A. Comparison of Threshold Policy and MDP Policy

In Fig. 2, we compare the delay performance of the threshold policy and the MDP policy

computed from the discounted MDP formulation described in [9]. Here we assume that the busy
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period is fixed to beµB = 100 and each PU/SU packet has a fixed packet length of one. The

length of the idle period is uniformly distributed in[0, 300] with meanµI = 150. The capacity of

this system equalsC = 0.114 under the collision probability constraintη = 0.001 [6]. For each

SU packet arrival ratep, we can find the corresponding thresholdΓ for the threshold policy such

that pc = η and then find the delayW under this threshold policy. Using the MDP formulation,

for eachp, we adjust the costCm to find an MDP policy so thatpc = η and evaluate its delay.

In Fig. 2, we plot the delay achieved by the threshold policy and the MDP policy as a function

of p. It is shown that the threshold policy performs very closelyto the MDP policy for the entire

range ofp considered. In Fig. 3, we compare the two-dimensional transmission regions of the

MDP policy and the threshold policy forp = 0.11. The threshold policy hasΓ = 94. The MDP

policy is a function of both the elapsed idle timet and the queue lengthM . The SU transmits

when (t,M) falls into the region to the left of line 2 shown in Fig. 3. As opposed to the MDP

policy, the threshold policy is independent of the queue length and its transmission region is to

the left of line 1 (corresponding tot < Γ = 94). It is interesting to note that the corner point of

the MDP curve(t,M) = (91, 1) is very close to the thresholdΓ of the threshold policy. While

the transmission region of the MDP policy is larger than thatof the threshold policy, the two

policies yield similar delay performance. This is because the probability that(t,M) belongs to

the middle region (between line 1 and line 2) is small. The effect on the delay performance is

thus negligible.

B. Accuracy of Markov Chain Analysis and Analytical Approximations

In Fig. 4 and Fig. 5, we examine the accuracy of the Markov chain analysis, developed in

Section IV, and the analytical approximations for the delayand the collision probability, developed

in Section V, for the threshold policy under various combinations of busy and idle distributions.

Here we fix the SU packet arrival rate and plotW and pc as functions of the thresholdΓ. The

curves for the Markov chain analysis are numerically evaluated from (5) forW and (6) forpc. The

analytical approximations forW andpc are obtained from (18) and (19), using the closed-form

expressions presented in Section V-D.

In Fig. 4, we consider an exponential busy distribution and auniform idle distribution, assuming

p = 0.11. It shows that the Markov chain analysis matches the simulation results perfectly. For
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each simulation point, we run a total of107 busy-idle cycles to achieve reliable results. For

the Markov chain analysis, we find that a total of200 states is sufficient to obtain accurate

numerical results. Following Example 2 in Section V-D, we evaluate the closed-form analytical

approximations forW and pc. We observe that both approximations are very tight, yielding

errors less than3%− 4%. While similar results have been obtained for Example 1 under a fixed

busy distribution and a uniform idle distribution, the results are not included here due to space

limitation.

In Fig. 5, we consider the fixed busy distribution and the Weibull idle distribution. Since

the Weibull idle distribution yields a higher capacity ofC = 0.213, we choose a higherp =

0.2 to operate near capacity. While the Markov chain analysis remains accurate, the analytical

approximations from Example 3 in Section V-D become looser compared to the case of the

uniform idle distribution shown in Fig. 4. The error of the delay approximation is roughly5%

except for the left-most point in Fig. 5 (a), corresponding to Γ = 66. Note that the delay increases

rapidly in this region, and some of the SU packets might need to wait for more than two busy-

idle cycles for transmission. This is not taken into accountin the analysis presented in Section

V, which may contribute to the inaccuracy of the approximation at this point. The error of the

collision approximation is about8% in the case.

C. Comparisons of Various Busy Distributions

In Fig. 6, we examine the effect of the busy distribution on the delay and collision probability.

We consider four different busy distributions with the samemean: the exponential distribution,

the uniform distribution, the Weibull distribution, and the fixed busy distribution. It is shown in

Fig. 6 (a) that the busy distribution affects the delay significantly. Out of these four distributions,

the exponential busy distribution and the fixed busy distribution induce the largest delay and the

smallest delay, respectively. On the other hand, given the same threshold, Fig. 6 (b) shows that

the collision probability changes only slightly with busy distributions.

D. Comparisons of Various Idle Distributions

Next, we examine the effect of idle distribution on the SU delay under the packet collision

constraint. We assume a uniform busy distribution and consider three idle distributions with the

same meanµI = 150: uniform, Weibull, and exponential. For the first two idle distributions and for
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eachp, we determineΓ of the threshold policy such that the collision probabilitypc = η = 0.001.

For the exponential idle distribution, due to its memoryless property, it is optimal to use a greedy

policy, under which the SU transmits whenever the channel issensed idle and the SU queue

is nonempty. Givenη = 0.001, the time capacityC = 0.06, 0.114, 0.213, for the exponential,

uniform, and Weibull distribution, respectively.

In Fig. 7, we plot the delay achieved by the threshold policy as a function ofp under the

collision constraint ofη = 0.001. For each idle distribution, there exists somep∗ such that when

p < p∗, the threshold policy becomes the greedy policy. We find thatp∗ = 0.06, 0.075, 0.095

for the exponential, uniform, and Weibull distribution, respectively. Fig. 7 shows that the delay

achieved by the threshold policy under these three idle distributions are similar in the region

p < p∗ where the greedy policy is the optimal policy. For the exponential distribution,p∗ = 0.06

is the highest arrival rate such thatpc does not exceedη. In comparison, the capacity of the

uniform distribution is higher. Therefore, in the regionp ∈ [0.075, 0.114), a threshold policy can

be found to ensure thatpc = η at the cost of increased delay. We note that the delay achieved

by the threshold policy increases rapidly asp approaches the capacity of0.114. The Weibull

distribution has the highest capacity. Whenp ∈ [0.095, 0.2], the delay achieved by the threshold

policy increases withp, but at a slower rate than that of the uniform idle distribution.

E. Imperfect Sensing

The analysis developed in this paper assumes perfect sensing where the sensing time is zero

and the sensing outcome is error-free. Next, we examine morerealistic scenarios in which the

sensing is imperfect, and compare the delay and collision probabilities with those of perfect

sensing. In Fig. 8, we plotW and pc for various sensing scenarios. The busy distribution is

a uniform distribution withµB = 100 and the idle distribution is a uniform distribution with

µI = 150. The PU packet has a fixed length of 1ms. Each SU slot is 1ms long, in which 5%

is for sensing, and95% is for transmission. We first consider three imperfect sensing scenarios

where the miss detection probabilityγmd = 10−3, and the false alarm probabilityγf varies from

0.01 to 0.2. Note that it is important to setγmd low in order to limit collision with the PU. Due

to the possibility of false alarm, the SU will determine the transition from an idle period to a

busy period only when, within an idle period, the PU channel is detected to be busy for several
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consecutive sensing periods. Similarly, due to the possibility of miss detection, the transition from

a busy period to an idle period is determined only when, within a busy period, the PU channel

is detected to be idle for a few consecutive sensing periods.As shown in Fig. 8, bothW and

pc decrease asγf decreases. As a performance benchmark, we also consider a fourth imperfect

sensing scenario, for which the system setup, such as the SU slot duration, and the lengths of

the sensing period and the transmission period, is identical to the other three imperfect sensing

scenario except that now we setγmd = γf = 0. This is the best performance that one can achieve

for the given system setup with nonzero sensing time. Fig. 8 shows that indeed the curves for the

fourth imperfect sensing scenario withγmd = γf = 0 are very close to that of the analytical curve

obtained from (18) and (19), which assumes error-free sensing outcome and zero sensing time.

We also observe from Fig. 8 (b) that forpc, the analytical curve gives close approximation to all

four curves of imperfect sensing scenarios, where the largest gap is less than6%. In comparison,

imperfect sensing has a stronger effect onW . As shown in Fig. 8 (a), the gap between the

imperfect sensing curves and the analytical curve becomes more pronounced asγf increases.

VII. CONCLUSIONS

In this work, we propose and analyze threshold-based transmission policies to minimize the

delay performance of the SU subject to a collision constraint on the PU. Such threshold policies

are shown to perform closely to an optimal policy found through a discounted MDP formulation.

A novel Markovian approach is developed to analyze the delayand collision probabilities of

the threshold policies. This approach treats each busy-idle PU cycle as a one-step transition

in the Markov chain, which effectively reduces the state-space of the Markov chain to facilitate

numerical computations. Furthermore, we develop analytical expressions to approximate the delay

and collision performance of the threshold policies under general busy and idle distributions. The

accuracy of the proposed approximation is confirmed numerically for several commonly used

busy and idle distributions. Furthermore, we show that the busy time distribution significantly

impacts the delay performance of the SU, while the collisionprobability and the threshold policy

are largely determined by the idle distribution. This is a dual observation of the results of [6],

[5], which shows that the PU idle time distribution largely determines the SU capacity. Future

work includes extension of the existing analysis to more general scenarios such as arbitrary SU

arrival processes, multiple PU channels, and multiple SUs.
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APPENDIX A

COMPUTATION OF THE TRANSITION PROBABILITY MATRIX

During the busy period we haveXn = Xn−1+Q, whereQ is a Bernoulli random variable with

parameterp. For then-th idle time slot such thatn ≤ Γ, we haveYn = max(Yn−1 − 1 + Q, 0)

because in this time slot we have at most one SU packet departure and one new packet arrival.

Note that onceYn = 0 or Yn = 1 for some time slotn, then we haveYv = 0 or 1 for every

n ≤ v ≤ Γ. This can be used to show that, for everyj ≥ 2 andv ≤ Γ,

P (Yv = j|X0 = i, B = u) =

(

v + u

v + j − i

)

pv+j−i(1− p)u−j+i. (29)

In (29) we use the fact that sincej ≥ 2, we must haveYn ≥ 2 for all 1 ≤ n ≤ v and thus we

have exactlyv packet departures by time slotv. Hence, the number of new packet arrivals out of

u busy slots andv idle slots isv + j − i. Then we arrive at (29) using the binomial distribution.

To computeP (Yv = j|X0 = i, B = u) for j = 0, 1, and v ≤ Γ, we follow the iterative

relations:

P (Yv = 0|X0 = i, B = u) = (1− p)
[

P (Yv−1 = 1|X0 = i, B = u) + P (Yv−1 = 0|X0 = i, B = u)
]

,

P (Yv = 1|X0 = i, B = u) = (1− p)P (Yv−1 = 2|X0 = i, B = u) + pP (Yv−1 = 0|X0 = i, B = u)

+ pP (Yv−1 = 1|X0 = i, B = u)

= (1− p)P (Yv−1 = 2|X0 = i, B = u) +
p

1− p
P (Yv = 0|X0 = i, B = u).

Whenv ≥ Γ+ 1, the SU does not transmit. It is sufficient to take into account the possibility of

a new packet arrival to obtain

P (Yv+1 = j|X0 = i, B = u) = (1− p)P (Yv = j|X0 = i, B = u) + pP (Yv = j − 1|X0 = i, B = u).
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APPENDIX B

PROOF OF(5)

We will first computeN using (4). SinceXn = Xn−1 + Q, whereQ is a Bernoulli random

variable with parameterp, we haveE(Xn) = E(X0) + np. Hence,

E(X0 +X1 + · · ·+XB−1) =

∞
∑

u=1

P (B = u)

u−1
∑

n=0

E(Xn) =

∞
∑

u=1

P (B = u)

u−1
∑

n=0

(E(X0) + np)

= E(X0)

∞
∑

u=1

uP (B = u) +
p

2

( ∞
∑

u=1

P (B = u)(u− 1)u

)

= µBE(X0) +
p

2
(νB − µB). (30)

To computeE(Y0 + Y1 + · · ·+ YI−1), we have

E(Y0 + Y1 + · · ·+ YI−1) =

∞
∑

v=1

P (I = v)

v−1
∑

n=0

E(Yn)

=
Γ

∑

v=1

P (I = v)
v−1
∑

n=0

E(Yn) +
∞
∑

v=Γ+1

P (I = v)

( Γ
∑

n=0

E(Yn) +
v−1
∑

n=Γ+1

E(Yn)

)

. (31)

Note that for everyn ≤ Γ, we haveYn = max(Yn−1 − 1 +Q, 0). It follows that

E(Yn) = E(Yn−1) + (p− 1) + P (Yn−1 = 0) = E(Y0) + n(p− 1) +
n−1
∑

i=0

P (Yi = 0).

Hence, for everyv ≤ Γ + 1, we have

v−1
∑

n=0

E(Yn) =
v−1
∑

n=0

(

E(Y0) + n(p− 1) +
n−1
∑

i=0

P (Yi = 0)

)

= vE(Y0) + (p− 1)
(v − 1)v

2
+

v−1
∑

n=0

n−1
∑

i=0

P (Yi = 0)

= vE(Y0) + (p− 1)
(v − 1)v

2
+

v−2
∑

i=0

P (Yi = 0)(v − 1− i). (32)

For everyn ≥ Γ + 1, we haveYn = Yn−1 +Q and henceE(Yn) = E(Yn−1) + p. It follows that

v−1
∑

n=Γ+1

E(Yn) =

v−1
∑

n=Γ+1

(

E(YΓ) + (n− Γ)p
)

= (v − Γ− 1)E(YΓ) +
p(v − Γ− 1)(v − Γ)

2

= (v − Γ− 1)
(

E(Y0) + (p− 1)Γ +

Γ−1
∑

i=0

P (Yi = 0)
)

+
p(v − Γ− 1)(v − Γ)

2
. (33)
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Noting thatE(Y0) = pµB +E(X0), we substitute (32) and (33) into (31) and combine the result

with (30) andW=N/p− 1 to obtain (5).
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Fig. 1. Illustration of the system model. Each SU slot consists of a sensing period and a transmission period. A collisionoccurs
in the k-th SU slot, when the SU starts transmission after sensing the PU channel to be idle, and the PU returns before the end
of the SU transmission period.
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Fig. 2. Comparisons of the threshold policy and the MDP policy for a fixed busy distribution and a uniform idle distribution.
For eachp, a threshold policy and an MDP policy are found such thatpc = η = 0.001.
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Fig. 3. Transmission regions of the MDP policy and the threshold policy for a fixed busy time distribution and a uniform idle
distribution. Assumep = 0.11. The two policies are found such thatpc = η = 0.001.
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Fig. 4. Performance of threshold policies as a function ofΓ. Comparisons of Markov chain analysis (5) and (6), analytical
approximations (18) and (19) based on (21), (23), (24), and simulation results for an exponential busy distribution anda uniform
idle distribution. Assumep = 0.11.
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Fig. 5. Performance of threshold policies as a function ofΓ. Comparisons of Markov chain analysis (5) and (6), analytical
approximations (18) and (19) based on (26)–(28), and simulation results for a fixed busy time distribution and a Weibull idle
distribution. Assumep = 0.2.
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Fig. 6. Performance of threshold policies as a function ofΓ. Delay and collision probability comparisons of various busy
distributions. Assume a uniform idle distribution andp = 0.11.
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Fig. 7. Delay performance of the threshold policies as a function of p. For eachp, a threshold policy with thresholdΓ is chosen
such thatpc = η = 0.001. Assume a uniform busy distribution and various idle distributions.
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Fig. 8. Performance of threshold policies as a function ofΓ. Comparisons of delay and collision probability for various
imperfect sensing scenarios and the analytical approximations from (18) and (19) that assume perfect sensing. Assume auniform
idle distribution and a uniform busy distribution,p = 0.11.


